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Abstract— We consider a cooperative conflict resolution prob- just a few agents (typically two). A set of efficient solutsofor
lem at traffic intersections. Our goal is to design a least the intersection collision avoidance problem was propdsed
restrictive supervisor able to identify the optimal corrections 18] using Scheduling Theory, and extended to more complex
to a human-decided input with respect to a given performance - gcenarios in [20]-[23]. Note that these papers ignore iir the
index, while keeping the system safe. Here, safety is formated  yaqign optimality arguments, in the sense that, when theri
in terms of a maximal safe controlled invariant set. Leveraing input is overridden, no attémpt is done to ,approximate the

results from scheduling theory, we characterize the preordr of ) Vs . . .
the optimal solution set and propose an efficient optimizatin drivers’ intent. Clearly, this can lead to unnecessarilgragsive

algorithm providing Pareto optimal solutions. We illustrate the ~ decelerations/accelerations.

application of the proposed algorithm through simulations in This paper addresses this issue by providing optimal, least
which vehicles crossing an intersection are optimally oveidden  restrictive supervisory control for a group of human-dnive
by the supervisor only when necessary to maintain safety. vehicles. Our approach is based on the solution of two separa

problems: (i) theVerification Problem determining if there
. INTRODUCTION exists an input signal that leads all agents safely throhgh t

Transportation systems are increasingly relying on commintersection; and (i) thé&upervisor Problemreturning a safe
nication technologies and automated control in order tdkena and optimal approximation of the drivers’ intent if the desi
safer, smarter, and greener solutions [1]. Recent resd@®h input violates safety conditions. By formulating the Swyisor
been focusing, among others, on the prevention and miigati Problem as a multi-objective optimization problem, we iifgn
of accidents, reduction of greenhouse gas emissions, #ind e preorder of the set of optimal solutions, and show how to
ciency in terms of energy and infrastructure utilization. iteratively perform scheduling optimization by solvingtveri-

A particular area of interest is collision avoidance atficaf fication Problem. To determine the least restrictive sebafiol
intersections [2]. Motivated by increasing levels of awtmy actions, we exploit the notion of maximal controlled inean
in road vehicles, much research effort has been focussed &gt (MCIS) and the least restrictive feedback map that kéeps
cooperative and non-cooperative conflict resolution fdlyfu system inside this set. Note that determining memberstipein
and semi-automated vehicles. Several authors have rgcemidCIS was proved to be NP-hard in the case of some collision
used rule-based approaches and exploit the multi-agetetsgs avoidance problems in [18], [24]. Nevertheless, approxma
paradigm as, for instance, in [3]-[9]. Also, [10]-[14] pased  solutions exist guaranteeing bounded errors with respettet
coordination strategies based on Model Predictive Contrelxact one.
(MPC). In particular, [10] exploits the structure of a cetized, The paper is organized as follows. Section Il describes the
finite-time optimal problem to propose an approximate st - dynamic model; Section Il provides the problem formulatio
while [11], [12] considered a fully decentralized appro@elsed  in Sections IV and V we formulate the single and multi objec-
on sub-optimal decision-making heuristics. ~_tive analog of the supervisor problem, respectively; finaile

All the above references assume that a controller is eithgfscuss a way to trade overall performance of the supervisor

fully in charge of the vehicles, or it can set conservativertits  ith restrictiveness in Section VI. All results are illusted by
within which the drivers’ decisions are constrained. Insthi simulations in Section VII.

paper we take a different approach. We assume that humans
are in charge of driving each car, and we aim to design a
supervisor which must let the drivers choose any contrabagct
as long as this does not lead to a collision. When (and only consider the systemt = f(x,u), y = h(x), where
if) this is not the case, the supervisor must correct the lUma; ¢ x C R™ is the state of. agents moving om different
decision, approximating it as best as possible while keepimaths (such as in Fig. 1), withvaorder dynamicsy € R™ is the
the system away from conflict states. Note, however, that thyector of the positions of the agents along their pathswaiwa
solution could be coupled, in a multi-layer control struetu control input. The previous system is given by the paratiehe
with existing algorithms for autonomous vehicles, by em&ir nosition ofn different systems which describe the longitudinal
safety verification of trajectories generated by a higheelle gynamics of each agent, givenby = f;(zi, us), ys = hq(z;).
decision system. . . .. We assume that the individual systems are monotone [25], wit
The problem of least restrictive supervision for collisiong , (the nonnegative real line) as the positivity coneyafand
avoidance is discussed, among others, in [15]-[23], anybis t that the full system has unique solutions. Throughout the te
cally set in a framework of verification of safety specifioa. the symbolsz;,y; andu; will be used indifferently to denote
Though standard general purpose algorithms exist, they afgctors (as above) and signals. The correct interpretatibbe
limited by numerical complexity to handle problems involyi  clear from the context. The valuesxfandy at timet, starting
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fixing a small positive time steppingand computing the input
signalu allowed for the intervalt, ¢ + 7] as the solution of the

following optimization problem:
(g - /’—.I! min J(Uges, u)
by X ueld (1)
: subjectto  x(7,u,x0) € MCIS.
g Note that the constraint of the above problem is evaluated as

the solution of the Verification Problem, and can therefage b
addressed using the techniques discussed in [18], [23]s{Eime
dard, non-optimal implementation of the Supervisor Pnoble
proposed in [18], [20]-[23] is equivalent to solving (1) kvitost

Fig. 1. lllustration of the considered scenario. Severamau-driven
vehicles approach an intersection following pre-definethga

assume thaj; is bounded to the nonnegative inter{@|y; ,q.) function T (tes, 1) 1= 0if uges = u, @
for all i and thatlim; o ¥i(t, i, maz) = Yimaz- dess BT 1if uges # u
I1l. PROBLEM STATEMENT This corresponds to returning;., whenever this maintains the

state within the MCIS, and returning an arbitrary inpusuch
that x(7,u,x9) € MCIS otherwise: existing results do not
aoptimize the input whemi # ug.s. In order to address this
roblem, we propose a way to select an optimal valueufor
henu # uges, by taking as cost function the infinity norm
of the deviation between the supervisor output and the efsir
input:

We assign to each agent an open interi@l, b;), which
represents the span of the intersection along the ageritis p
see Fig. 1. Note that this interval must account for the pa}si
size of the agent and of the intersection. A collision occur
when two agents verify the conditiong(t) € (a;,b;) and
y;(t) € (a;,b;) atthe same instant We callBad Sethe subset
B C R™ of collision points, defined asB := {y € R" : J(Wges, 1) := [[u — Udes|| co- ()
yi € (ai,b;) A y; € (a;,b;),for somei # j}. Our approach In the sequel, we provide a numerical strategy to optimize
is based in two main problems: the Verification Problem ard ththe above function using existing results on the Verifigatio
Supervisor Problem. Their formal definition is given asdals.  Problem. We then see that the input which minimizes (3) is in
general not unique and, by formulating a multi-objectivalag
of the Supervisor Problem, we show that the set of optimal
solutions has a preorder, which allows to select a optimal
solution.

Problem 1 (Verification Problem (VP)) Given the initial con-
ditions xo determine if there exists an input signalwhich
guarantees that(t, u,xq) ¢ B forall t > 0.

A computationally efficient solution to VP was proposed in IV. SINGLE OBJECTIVE CONTROL DESIGN
[18], [23] through a reduction to a job scheduling problemeT  The solution to problem (1) given the cost function (3) is
exact solution is, in general, NP-hard [18], but approxiov& trivial if x(7,uges,Xo) € MCIS. In this casen = uges
with guaranteed error bound are available, which allow teeso satisfies all the problem’s constraints Wit Uges, Uges) =
the Verification Problem for very large systems. 0. In this section, we solve problem (1) in the case when
The subset ofX of all initial conditions which satisfy the X(T, Uges, Xo) ¢ MCIS.
Verification Problem is known in the literature as the Maxima
Controlled Invariant Set (MCIS) [26]. As long as the system’A. Problem Reformulation
state remains in the MCIS, there exists an input which avoids \ye can rewrite problem (1) with cost function (3) as follows:
all collisions. Therefore, the role of the supervisor is ts@re .
that the state never leaves the MCIS, and a least restrictive wett, oo g, ound

supervisor should do so by modifying the input selected ley th : 4
user (in our case, by the drivers) as little as possible ahdibn subject to lu = tdesloo < tbouna X
strictly necessary. To formally express this we usetémgent x(7,u,%0) € MCIS.
coneatx to the MCIS, denoted, MCIS, which is the set of all Here,upounq iS an upper bound to (3), and minimizing it while
vectorsv such that satisfying safety constraints yields an optimal solution(1).
lim Xk "X _ V. Let now MCISupouna) denote the set of all states € X
xp—x,x,xEMCIS ||xx — x| ||Vl which satisfy the Verification Problem under the constraint
Calling uges : Ry — R™ the drivers’ intent and1 : Ry — [u(t) — wges()|loo < Ubouna fort € [0, 7]. (5)

R™ the input returned by the supervisor, we can formalise thgnd consider the optimization problem
Supervisor Problem as follows:

min Ubound
Problem 2 (Supervisor Problem)Given the current state, “b"“_"dER* (6)
and the input signal.s, return u such thatf(xg,u) € subjectto  xg € MCIS(upound)-
Tx MCIS and such as to minimize a cost functidfu,.s, u). The following result holds.

In practice, without further assumptions on the drivers’ inLemma 1. The optimal cost of (4) is equal to the optimal cost
tent, at any given time the supervisor can only know a desiresf (6).
input vector (e.g., the instantaneous reading of brake and ac- . . .
celeration for all drivers). Therefore, we assume in theuseq Proof. Letuy,, , andug,,, , represent the optimal costs of (4)
thatuges is a constant signal, with value equal to the vector ofnd (6), respectn{ely. The following two arguments are:true

the last measured desired input. This amounts, in pradtice, o u}, .., > g . If xo € MCIS(u},,,,..), then there
optimize the control signal towards the best admissibldireg exists @ such that|i—uges|| oo < Uf,ynq fOrallt € [0, 7]
of the driver’s input during each control time interval. Tatgove andx(7, @, xo) € MCIS. Take nowa = @ for ¢ € [0, 7]

supervisor can be implemented as a discrete-time algarklm andu = uges for ¢t > 7. This gives||u — Wies|loo <



Ufpuna ANAX(T,u,X9) € MCIS. Thus, (T, u},,,q) iS @ Pareto optimal solutions are by definition not comparable in
feasible solution for (4). the preorder induced by (7). Therefore, in the absence tfdur
L If x(r,u,%0) € MCIS and|ju — hypotheses, all Pareto optimal solutions are equally gdbéd.

’
o U” > uf .
bound = “pound following result holds.

Ues|loo < Uphna thenxg € MCIS(u, ). Therefore,

u;;:)und is a feasible solution for (6). Lemma 2. All solutions of (1) are weak Pareto Optimal for (7).

Because of the previous two statements,,,; = U, una: T
. ) Proof. The proof is by contradiction. Assume that there is an

The advantage or rewriting (4) as (6) is that the search spaggtimal solutionu of (1) that is not Pareto optimal for (7). This
of the latter is the non-negat|¥e real line, rather than ational  means that exists a solutiar of (7) such that/; (tges , 1)) <
space. The optimal solution;,,,,,, to (6) can be numerically 7. (y,.. . ;) for all i. Then.J (uges, 0’) < J(Uges, u) in (1),
computed using a bisection method (see Algorithm 1), and @ntradicting the optimality ofi. 0
full optimal solution of (4) can be retrieved by selecting an ) )
input u satisfying the constraints of (4) falound = u}, .4 By the above lemma, any solution of (1) is at least weak
(ways to construct such an input are explained, e.g., in)[18]Pareto optimal. It is however interesting to select, amapigy 0
Algorithm 1 inherits the complexity of the verification stepmal solutions, one which is Pareto optimal, see Fig.2. Iméise
x0 € MCIS(upound), Since the bisection cycle 3(1). There- of this section we d!scuss a way to _|dent|fy one such sqluuon
fore, the complexity of optimally solving (1) is comparalite Our approach exploits a representation of the constraifm)ai
that of solving the Verification Problem, and any approxienatterms of a scheduling problem, following the idea introdiire
polynomial-time solution of the Verification Problem ditigc  [18]. We briefly introduce the scheduling equivalence intisec
improves the solution of (1). V-A, then we discuss the optimization algorithm.

A. Verification problem vs. Scheduling problem

Algorithm 1 Numerical solution of (6) Define for each agentsuch thaty;(0) < a, the quantities

L: Initialise U = max; (¢, maz — ti,min), L =0 R; = infy ey {t : vi(t,us) = ai}, Dy = sup,, g {t :
g; Wh'fbindi ?Jhiezr;c/’;ddo yi(t,u;) = a;}, and set; = D; = 0if y;(0) > a;. These two
41 if xo € MCIS(upgung) then quantities are, respectively, the minimum and maximum time
5: U = Ubound at which the output of systerhcan reachs;. Notice thatR;
?} e'SeL _ is always finite, since by assumptitim; _, oo ¥; (£, Ui maz) =
: ~ Ybound Yi.maz, While D; can in general be infinite ifu; ,,,;, can

bring agent; to a stop before:;. For each agent such that
y;(0) < a;, given a real numbefl;, define P;(T;) :=
V. MULTI OBJECTIVE CONTROL DESIGN infy, e, {t : vi(t,u;) = b;}, with constrainty; (t, u;) <

: ; Vi <T;.
The optimal costs;,,,., of (4) is the smallest value of the % ! . - .
cost function (3) for which all agents can avoid collisiohkere ‘ Ig the cgnbs.trzzln}_ Ca;”%g b'e_sgtlfsf;e.d, ‘S}?t@i) N _Oob If
can clearly be multiple optimal solutionswith the same cost yl(d ).f € %’“;% ; 'ff‘e }’g( ja) ':161 1{9 191( ’:‘hzwafﬂ)l._t tl'}’
ug,. . and, in particular, for some of these solution the cosind f¥i(0) = b; definel(T;) .= 0. Bi(T;) is the earliest time
Ji(thges.i, ;) (defined as (3) restricted to agedtfor some that: can reacl;, if it does not passa; beforeT;. A scheduling

agent may be smaller than for other solutions. In other wordBroPlem consists in assigning jobs to a resource satisfying
there is a set of optimal solutions. and the single-agent codVén reduirements. Using the above quantities, we carewrit

functionsJ; (uges,:, u;) induce a preorder on this set. This solu-. te Ven{!catlon Probltent1h as a schedtuhlmg protblemtgvhgrg the
tion structure is more appropriately analysed in terms oéf@a Itg Eresggs'pr:];%ptrg?ﬁg rsé soe :g:og%et'heet.%%eg Sé Fﬁ% Zguch agen
optimality in a multi-objective problem. Let us rewrite Bfem '9 urce, : P y g

(1) as the following multi-objective optimization problem in the intersection is the length of the job to be executee Th
following result holds.

min Ji(udes,iaui)aVi . . . .

ui €EU; (7) Theorem 1. Given an initial conditionxo, xo € MCIS if and

subjectto  x(7,u,x¢) € MCIS, only if there exists a schedul® = (71,...,T,) € R’} such
Definition 1. An admissible solutionu of (7) is calledweak ~thatfor alli: R, <T,< D, ®)
Pareto optimalif there exists no admissible solutiarf such  and for all (4, 7), if 2;(0) < b;, then
that J; (uges,i, u;) < Ji(uges,i, u;) for all ¢; it is called Pareto T, > T; = T; > P;(T). 9

optimalif there exists no admissible solutiard # u such that
Ji(Udes,iru;) < Ji(Udes,i» i) for all i and J;(udes,i, u;) <
Ji(Udes,i, u;) for at least oné (see Fig.2).

The reader can refer to [18] for the proof in the case whjere
is bounded above. An extension of the proof t9 € [0, ¥maz]
is simple. Notice that, in the above definitions, the quiait
R;, D; and P; are all dependent on the gé{. In the presence
of constraint (5), then, these quantities become a funation

Pareto frontier the constraining quantityiy,..q. The following definition is
weak Pareto frontier introduced.

J2 (ude.‘;,Q-, UZ)

®  Pareto solution Definition 2 (Scheduling Problems)Letting SP denote a

® weak Pareto solution scheduling problem defined by (8) and (9), we write
o SP@pound) When the scheduling quantities are computed

® non Pareto solution under the constraint (5).
J1 (Uges1 u1) o SPW1,bounds - - - » Un,bound) When the constraint (5) is dif-
Fig. 2. lllustration of Pareto and weak-Pareto solutiorssoedingly to ferent for different agents.

Def.1.



« T € SP(uouna) if T is a feasible schedule of _ v R‘l-l :) > R
Sp(ubound)- L 2 Veh. 2 |R2 : Ii "
o SP(L, upound) When arestriction of SR,,...q) 10 a subset E| V°h'3 g " ! B
L of the agentq1,...,n} is considered. % s : 1o
In this notation and by Theorem 1, the constraint of problem®?  ven.s | L% P: = [ Loose jobs
(6) can be written aST : T € SP(upound). We can now prove E
a simple property regarding the dependence of SE,e5,4: 2 v i > > M Tightjobs
5 "D, | | Py
Lemma 3. Consider the quantities?;, D; and P;(T;) of i; Veh. 2 ||R T- o
SP@bouna), and R}, D} and P/(T;) of SP@j,,,,) with & v . 1
Upound < Ubound- We have thail?; < R}, P,(T;) < P/(T;), £ vens ’|T,:1 il
D; > Dj. @ s [ >
T

Proof. The property follows from the fact that SB(..q) is a

relaxation of Spﬁmund)' Fig. 3. lllustration of two feasible schedules 8P (u;,,,, 4, 11T). Jobs

1 and 2 are constrained in both, while job 5 is constrainingZinand not

. . ﬁight in T”. ScheduleT” is then the constraint-minimal between the two.
In what follows, we also consider an extension of the schedu

ing problem defined by (8) and (9) where jobs cannot b S . . .

executed during specified time intervals, which are known ga}s;Jble 'ngfj(,“b"“"d’ IIT) without changing the relative order

inserted idle timegiit) [21]. Given a set of inserted idle times Ot jobs and iits.

IT:= {[a1, B1], [z, Ba], ...}, this amounts to adding to the Definition 5 (Constraint-minimal schedule)Consider a sched-

above the additional constraint ule T € SP. The schedule is constraint-minimal if no other
(T3, (1) N (e, B5) =0, Vi, j. (10) scheduléI” # T, T' € SP has a set of constrained jobs that is

This problem will be denoted SB{,una, IIT). astrict subset of that i . See Fig. 3.

S o _ Using the above definitions we can prove a useful result,
B. Multi-objective optimization algorithm based on the following construction.

In this section, we discuss an algorithmic solution to (7) « Consider a scheduldl’ < SP(u},,.. IIT), where
which identifies a Pareto optimal solution. The following-de Upuna 1S the optimal cost of (4) with constraint T :
initions are used to discuss the algorithm. T € SP(upound, 1IT), and assume thdF is constraint-

minimal.

« Define a setC of constrained jobs andl of jobs that are

not constrained il for SP(u; IIT), and define a

Definition 3 (Tight set) Consider a scheduleT €
SP (upound, IIT). We say that an ordered set of jobs and in-

serted idle times = {1,...,m} is tight if the following new seflTT” :i— ITT U {[T, P_(bj’#ﬁ@% e C)
conditions are satisfied: (i) all jobs and iit's except thestfir g, tﬁe optimal cgst Zof (16) with coﬁstraiﬁtT’ )
start exactly after the previous job or iit is done, i.&;, = T ¢ Sbfl’#(’f U, TIT'). '

P 1(Ti—q),0rTy = Biq, or; = Pioq(Ti-1), Or oy =

Bi—1; (ii) if the first element is a job it starts exactly at its rase » Finally, consider the schedling prc?blem

ime. i N NN SP(uy o upy IIT), where u)* .. =
time, i.e., atRy; (iii) if the last element is a job, it starts exactly . ( bo?if"‘.ivl’c ! 8011,7*01»”’ 3 it boultjdﬂ
at its deadlind)m_ Upoundg 1T 2 ecC,an ubound,i = Upoyng T2 € L.

In other words, a tight set is a set of jobs and iit's whos emma 4. The set of constrained jobs il for

L : - P(u},una: 1IT) is a subset of the set of constrained
scheduled starting time cannot be changed without chanlying : bs in any TV ¢ SP(ug;“und,l,--wug;und.,anT) for

order in which they are executed. Note that a single job wit s e
eqgual release time and deadline is a minimal example of & tig P(“bound,l’ -+ Ubound,n> 1T).

set, and that an iit is by definition always a minimal tight setpygof. This is a consequence of selecting a constraint-minimal
Given a tight set for a schedUlB € SP(upound, IIT), We can  scheduleT. First of all, notice that (yu}’, ., < u},,. .
identify a subset of jobs which do not satisfy constraints (8 py | emma 3 and since/* is computed by removing

bound

(9), or (10) if upoung is reduced, unless we change the ordefrom SP all constraining jobs, and that (ii) for ar§’ e
with which they are scheduled 1. We call these jobgon- SP(uy* 1% IT), TV € SP(u,,,4 11T).

7 ,
strained and formally define them as follows, explicitating with The bgﬁ?)‘,i’lway e job which is constrained i

PEi(bound) @nd Di(upouna) the dependence of the schedulingfoy Sp(y# TIT) can be not constrained il for

quantities of problen$P (usound) ON Ubound- SP (U} ind 1 - - - > Upruna.n, 1IT), is if its constraining joby is

Definition 4 (Constrained and constraining jobs) tightjob i  Sscheduled at a different time " than inT. However, sincel
is constrainedn a scheduldl for a problem SP{younq,lIT) if IS cOnstraint-minimal, schedulingat any different time would
i) itis followed by another tight jolj and P; (T3, uj,,,,,,) > T; ~ 9enerate a new constrained jolin T” for SP(uj,,,,g, IIT).
for anyu;, ..., < Ubound, OT i) it is followed by an IIT[«, 5] ~ We have definediy;,,,4 1. = Upound < Upounas therefore this
and P; (T, Uy q) > @ fOr @MY ULy, < Ubound, OTiil) T; > would imply T & SP(upgpa1s - - > Uhound,n IT)- O
D;(u}pynaq) fOranyuy,... . < tpound-

A tight job is constrainingif it is not constrained and it is Algorithm 2 is based on the construction above. As we have

preceded by a constrained job in the same set of tight joks, seE€N In Lemma 3, decreasing the valuegf..,q tightens the
Fig. 3. constraints of SRound). AS @ consequence, we can interpret
the optimal cost of (4) as the valug_ ., ; for which a subset of
We can think of the constraining jobs for a schedilec  jobs verify the constraints exactly, i.e, would not be scliable
SP (upound, IIT) as those jobs which limit the minimum value for a smaller value ofipo.nq - If we remove these job from the
that upoung Can take while allowindgT to be adapted to be optimization problem (but reserve their execution timeigs i



Algorithm 2 Multi-objective optimization algorithm VIl. SIMULATION RESULTS
1: Initialise L = {1,...,n}, IT=0, V* = oo

2. setk = 0 In order to show the efficiency of the proposed optimal
3: while L is nonempty orV’* > 0 do supervisory control, we considered in the sequel a thrééche

ps ’éiifq;atlion step: Solve problem (6) with constraint scenario as depicted in Fig. 1. Assume that the longitudi-
s P P T - Tpe SP(L, upoung, I1T) and nal dynamics of all vehicles, travelling over three difiere

7 call V* its optimal cost paths, are described by double integrator dynamics given by
8 Selection step:Select a schedul@ € SP(L, V*, IIT) Z;(t) = u;(t) andy;(t) = =z;(t), wherez; € [0m/s,17m/s]

9: ) that is constraint-minimal andu; € [—4m/s?,2m/s%], Vi. In all simulations the initial

10 Efc;lfftjggssiteept that are constrained conditions of the system ave = [(0, 11), (32,12), (35, 10)],

1o for T, in SR(L, V*, 11T do and the supervisors run with a time stepping dfs. To simplify

13: removei from L the interpretation of the results, we have assumed that the
14: add the interva[T;, P;(T;)] to IIT drivers of all vehicles always request an input equali6

15: set/i == V", T =T, (horizontal dashed line in all figures), and that the intetise

16: return (J7,..., Jp), (T7..., T7) corresponds to the intervés0, 75m along all vehicles’ path

(grey boxes in all figures).

In Fig. 4(a), we show the behaviour of a scheduling-based
aﬁupervisor such as the one presented in [18], which does not
perform any optimization of the trajectory once the bougdar
of the capture set is reached. At= 1.1 seconds into the
imulation, the supervisor detects that vehicles are atmut
eave the MCIS and intervenes to correct their trajectony. B

we can solve (4) for the remaining jobs and find a lower optim
cost. Iterating this reasoning we form a solution to the mult
objective problem (7). Note that the complexity of Algonth

2 is defined by the complexity of the optimization step, whic
in turn is leaded by the complexity of the test at line 4 in

Algorithm 1. construction, the ove_'rrid(_a input @a_kes_the extremal valyes

+2 andu; = —4 until a first collision is averted at = 3.1s,
Theorem 2. Algorithm 2 provides a Pareto optimal solution to and a second one is averted at 6.2s.
). Fig. 4(b) considers the same scenario when the single-

bjective optimal supervisor (6) is implemented with =
.1s. By optimizing the intervened trajectories, the supemviso
provides a slightly better approximation of the driverssided

Proof. The algorithm is implementing the process describe
before Lemma 4, and it returns a schedllé and a solution

}_Oeg%én 4t(\al\rlgn§acr>]f c%nsc?fj dog tcr)lgttlrgl?}o(k:gs]% ’th'e : égﬁe alzrjrq%rgn inputs while avoiding two consecutive 2-vehicle confliatsnfi
SP(J3 J*) are constrained, of havé* — 0. In both t=11stot=3.2sand from¢ = 5.4sto¢ = 6.5s. Note that
1 7't' ’ 7}( ossible to find afeasible schedule for damb for both conflicts the only trajectories able to avoid cidiis
g‘%s(?]s;;' 1S nf},f; With J7* < J* for at least ong therem are obtained with extremal inputs. It is worth mentioningtth
i 1o J* i’s 4 Pareto oiptimal ;olution ’ 0 this is always the case for trajectories sliding on the aapset
U i .

of a two-vehicle problem.
VI. POSITIVE PREDICTIVE HORIZON Fig. 5(a) shows the resulting trajectories when a multi-
objective optimal supervisor (7) is implemented with= 0.1s.

Though the proposed algorithm does not rely on a MPCag expected, the performance of the supervisor improveseMo
based formulation, the bridges between the two approachgé%]

. 2 . cisely, the supervisor only overrides the blue and green
are evident and worth of a discussion. Two aspects are shargthicles with respect to the first collision, allowing thedre

between them: (i) the notion of prediction horizon; (i) theyehicle to continue its desired trajectory. The overridiighe
concept of input/state constrained predictions. red vehicle only occurs d@t= 3.2s, i.e., two seconds later that
As for MPC, the variable in (4) and (6) effectively acts as a j previous examples; the performance of the green vehscle i
prediction horizon defining how far ahead conflicts are detec 5150 improved (fromt = 3.2s to ¢t = 6s). Without needing
By verifying thatx(7, u, %) € MCIS, we are in factimposing (o override unnecessarily the green vehicle, the mulizcibje
a specification om over the interval0, 7].
Keeping the time-stepping of a supervisor unchanged, we can

therefore improve its performance by increasing the vafue o @ N Ol AR
in the constraint of the optimal output computation. Thisyma
lead to more driver-friendly, less aggressive manoeuvibs. & 6
trade-off is on the restrictiveness of the supervisor, sifr £ / E /
large values ofr interventions may be triggered earlier than** =49
strictly necessary 20 20
Another important comparison aspect is the consideration o
state and input constrained predictions. Note that whila in =—— — : e
MPC framework input, state and ultimately safety constgain
are explicitly formulated as inequalities or box conditpn -1 - - -—1- -
equivalent constraints are incorporated here into the idefin 5 ° 5"
of the MCIS set, and implicitly enforced in the differentfiou- £ 3
lations through the conditior(7, u, x¢) € MCIS. "2 ~-2
INote that, unlike for MPC, a larger value of will not increase the -4 > — A‘[Sls R — —— -”5]8

computational complexity of the proposed protocol. Indehd complexity
of the Verification Problem is independent of (which only defines the Fig. 4. (a) Traditional supervisor based on (1) and cost (#) w= 0.1s;

state’s projection horizon) and therefore the complexityhe optimization  (b) Single-objective optimal supervisor with= 0.1s.
problems remains unchanged.
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Fig. 5.  Multi-objective optimal supervisor: (a)with = 0.1s; (b) with [10]

7 = 1s; (c) with an EDD scheduling withr = 1s

supervisor is, as expected, less restrictive/invasivebé&ly, [11]
one can easily observe that the approximation of the dfivers
desired input are significantly improved. [12]

Fig. 5(b) shows the trajectories of a multi-objective opim
supervisor, where = 1s. As expected, the supervisor overrides
the desired input abodts earlier than in the other simulations, (13]
but the resulting override is less aggressive, since thermar
deceleration reached i = —2.5, instead ofu; = —4 as in
previous cases.

Finally, Fig. 5(c) shows the trajectories of a six-vehicle[15]
system when a multi-objective optimal supervisor using & Ea
liest Due Date (EDD) scheduling algorithm. EDD consists in
choosing, among all possible job orders, a schedule where tli6]
jobs with the earliest deadlines are executed first [27]. Came
easily observe that while actions are taken, in the eartyesté
the simulation, to avoid a collision between the purplegldad
cyan vehicles, the remaining vehicles keep their desiretibmo
profile until ¢ = 5s. From this point onwards, due to the risk (18]
of a collision between the green, yellow and red vehicles, th
supervisor takes control of the different vehicles untihitiots  [19]
have been solved. The maximum time to run the optimization
algorithm wad).1s on a2.8 GHz, 16 Gb RAM laptop running
on Windowss.

[14]

[17]

[20]

21
VIII. CONCLUSIONS AND PERSPECTIVES (1]

In this paper, we discussed the design of optimal, leat?]
restrictive supervisors for intersection collision avande. We
leveraged results on scheduling theory to construct two gbg;
gorithms that compute the optimal corrections to the dsiver
input necessary to avoid a collision, one providing an ogtim
solution, the other a Pareto optimal one. The complexity dg4l
these algorithms is inherited from that of solving a Verifica
Problem, which was discussed in [18], and can therefore talgs)
advantage of efficient solutions to the Verification Prohl&ime
definition of the supervisor implicitly introduces a pretibo-
time horizon. We exploited this to further improve our reésul
allowing to change this horizon to tune the trade-off betwee,7
overall performance and restrictiveness.

[26]
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